Abstract

We discuss the acoustical behavior of a 1D model of granular medium, which is a chain of identical spherical beads. In this geometry, we are able to test quantitatively alternative models to the Hertz theory of contact between elastic solids. We compare the predictions of the different models to experimental results that concern linear sound wave propagation in the chain submitted to a static force, and nonlinear solitary wave propagation in an unconstrained chain. We use elastic, elastic-plastic and brittle materials, the beads roughness extends on one order of magnitude, and we also use oxidized metallic beads. We demonstrate experimentally that at low static forces, for all types of beads, the linear acoustic waves propagate in the system as predicted by Hertz's theory. At larger forces, after onset of permanent plastic deformation at the contacts, the brass beads exhibit non Hertzian behavior, and hysteresis. Except in the case of brass beads, the nonlinear waves follow the predictions of Hertz theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call