Abstract
In this work, we prove that certain L2-unbounded transformations of orthogonal wavelet bases generate vaguelets. The L2-unbounded functions involved in the transformations are assumed to be quasi-homogeneous at high frequencies. We provide natural examples of functions which are not quasi-homogeneous and for which the resulting transformations are not vaguelets. We also address the related question of whether the considered family of functions is a Riesz basis in L2(R). The Riesz property could be deduced directly from the results available in the literature or, as we outline, by using the vaguelet property in the context of this work. The considered families of functions arise in wavelet-based decompositions of stochastic processes with uncorrelated coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.