Abstract

We consider N=4 conformal supergravity with an arbitrary holomorphic function of the complex scalar S which parametrizes the SU(1,1)/U(1) coset. Assuming non-vanishings vevs for S and the scalars in a symmetric matrix Eij of the 10¯ of SU(4) R-symmetry group, we determine the vacuum structure of the theory. We find that the possible vacua are classified by the number of zero eigenvalues of the scalar matrix and the spacetime is either Minkowski, de Sitter, or anti-de Sitter. We determine the spectrum of the scalar fluctuations and we find that it contains tachyonic states which, however, can be removed by appropriate choice of the unspecified at the supergravity level holomorphic function. Finally, we also establish that S-supersymmetry is always broken whereas Q-supersymmetry exists only on flat Minkowski spacetime.

Highlights

  • Conformal supergravity is the supersymmetric completion of conformal or Weyl gravity, described by the Weyl square term

  • It is invariant under the full superconformal group, which is the supergroup SU (2, 2|N ), the real form of SL(4|N ), where N counts the number of supersymmetries

  • We have studied possible vacua of maximal N = 4 conformal supergravity which is the supersymmetric completion of conformal or Weyl gravity

Read more

Summary

Introduction

Conformal supergravity is the supersymmetric completion of conformal or Weyl gravity, described by the Weyl square term It is invariant under the full superconformal group, which is the supergroup SU (2, 2|N ), the real form of SL(4|N ), where N counts the number of supersymmetries. Conformal supergravity can be obtained as the massless limit m → 0 of the supersymmetric completion of m2 R + Weyl 2 gravity [16,17,18] (see [19,20,21,22]) Such theories contain ghost propagating states [23,24,25], they are interesting as they arise in the twistor-string theory via closed strings or gauge singlet open strings [26].

Spectrum and Action
D H ikmp jlnq
Structure of H
Constant Holomorphic Function
Non-Constant Holomorphic Function
Explicit Examples for Non-Constant Holomorphic Function
Stability
Non-Diagonal Eij
Partial Supersymmetry Breaking
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.