Abstract

AbstractThis work proposes the utilization of a boron doped diamond (BDD) electrode as a sensor for pesticides and as well as an anode for electrochemical combustion of Parathion in spiked, pure and natural waters. The square‐wave voltammetry was selected as the electroanalytical technique and the Britton–Robinson buffer as the electrolyte. The electrochemical reduction responses of Parathion were analyzed and compared with those previously obtained using a hanging mercury electrode (HMDE). The detection and quantification limits were calculated from the analytical curves both for BDD and HMDE in Milli‐Q water (2.4 and 7.9 μg L−1 and 3.9 and 12.8 μg L−1 respectively) showing only a slight improvement when used BDD. However, if the application involves polluted natural waters the improvement is accentuated due to the very low adsorption characteristics of BDD, which prevent the fouling of electrode surface by organic pollutants. The BDD was also used as anode for electrochemical remediation of Parathion contamination. In this case, electrolysis was carried out in high positive potential (3.0 V) and lead the electrochemical combustion of Parathion to CO2 and H2O, as measured by the diminishing of total organic carbon in the electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call