Abstract

Advances in high-throughput high-resolution mass spectrometry and the development of thermal proteome profiling approach (TPP) have made it possible to accelerate a drug target search. Since its introduction in 2014, TPP quickly became a method of choice in chemical proteomics for identifying drug-to-protein interactions on a proteome-wide scale and mapping the pathways of these interactions, thus further elucidating the unknown mechanisms of action of a drug under study. However, the current TPP implementations based on tandem mass spectrometry (MS/MS), associated with employing lengthy peptide separation protocols and expensive labeling techniques for sample multiplexing, limit the scaling of this approach for the ever growing variety of drug-to-proteomes. A variety of ultrafast proteomics methods have been developed in the last couple of years. Among them, DirectMS1 provides MS/MS-free quantitative proteome-wide analysis in 5-min time scale, thus opening the way for sample-hungry applications, such as TPP. In this work, we demonstrate the first implementation of the TPP approach using the ultrafast proteome-wide analysis based on DirectMS1. Using a drug topotecan, which is a known topoisomerase I (TOP1) inhibitor, the feasibility of the method for identifying drug targets at the whole proteome level was demonstrated for an ovarian cancer cell line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call