Abstract

Within the complex milieu of a cell, which comprises a large number of different biomolecules, interactions are critical for function. In this post-reductionist era of biochemical research, the 'holy grail' for studying biomolecular interactions is to be able to characterize them in native environments. While there are a limited number of in situ experimental techniques currently available, there is a continuing need to develop new methods for the analysis of biomolecular complexes that can cope with the additional complexities introduced by native-like solutions. We think approaches that use microfluidics allow researchers to access native-like environments for studying biological problems. This review begins with a brief overview of the importance of studying biomolecular interactions and currently available methods for doing so. Basic principles of diffusion and microfluidics are introduced and this is followed by a review of previous studies that have used microfluidics to measure molecular diffusion and a discussion of the advantages and challenges of this technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.