Abstract

A variant of the orthogonal gradient method of orbital optimization in the INDO-MCSCF framework has been used to study the photochemical decomposition of the HNO molecule into H + NO in the lowest1.3A″ states. A complete geometry optimization has been carried out at all points of the reaction path which appears to be almost barrierless. The one-electron density matrix extracted from the optimized wavefunction at each point has been used to generate the relevant sets of quantum chemical valence parameters. A sharp transition is noted in the N-H bond order and hydrogen free valence index when plotted as functions of rNH. This enables us to locate the transition region easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.