Abstract

Many features of complex systems can now be unveiled by applying statistical physics methods to treat them as social networks. The power of the analysis may be limited, however, by the presence of ambiguity in names, e.g., caused by homonymy in collaborative networks. In this paper we show that the ability to distinguish between homonymous authors is enhanced when longer-distance connections are considered, rather than looking at only the immediate neighbors of a node in the collaborative network. Optimized results were obtained upon using the 3rd hierarchy in connections. Furthermore, reasonable distinction among authors could also be achieved upon using pattern recognition strategies for the data generated from the topology of the collaborative network. These results were obtained with a network from papers in the arXiv repository, into which homonymy was deliberately introduced to test the methods with a controlled, reliable dataset. In all cases, several methods of supervised and unsupervised machine learning were used, leading to the same overall results. The suitability of using deeper hierarchies and network topology was confirmed with a real database of movie actors, with the additional finding that the distinguishing ability can be further enhanced by combining topology features and long-range connections in the collaborative network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.