Abstract

Modern methods of quantum crystallography are techniques firmly rooted in quantum chemistry and, as in many quantum chemical strategies, electron densities are expressed as two-centre expansions that involve basis functions centred on atomic nuclei. Therefore, the computation of the necessary structure factors requires the evaluation of Fourier transform integrals of basis function products. Since these functions are usually Cartesian Gaussians, in this communication it is shown that the Fourier integrals can be efficiently calculated by exploiting an extension of the Obara-Saika recurrence formulas, which are successfully used by quantum chemists in the computation of molecular integrals. Implementation and future perspectives of the technique are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call