Abstract

Three-dimensional photoelasticity using the stress-freezing technique is dependent on the production of resin models that do not possess any residual stresses from the manufacturing process. The traditional methods of production involve casting to shape or machining from solid blocks using thermo-setting resins. These methods are expensive and time-consuming, with models typically requiring days for preparation. The rapid-prototyping technique of stereolithography employs similar resins and allows complex components to be built in a matter of hours. However, the residual birefringence associated with the stereolithographic process has so far inhibited its routine use in photoelasticity. A four-centre study has been conducted in an attempt to understand the mechanisms generating this birefringence and to investigate methodologies for producing models free of stress and birfringence. The mechanical behavior of stereolithographic and thermo-setting resins have been compared at room temperature and under stress-freezing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.