Abstract
This paper deals with the stability analysis of one-step methods in the numerical solution of initial (-boundary) value problems for linear, ordinary, and partial differential equations. Restrictions on the stepsize are derived which guarantee the rate of error growth in these methods to be of moderate size. These restrictions are related to the stability region of the method and to numerical ranges of matrices stemming from the differential equation under consideration. The errors in the one-step methods are measured in arbitrary norms (not necessarily generated by an inner product). The theory is illustrated in the numerical solution of the heat equation and some other differential equations, where the error growth is measured in the maximum norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.