Abstract

A global magnetohydrodynamic (MHD) model describes the solar-terrestrial system and the physical processes that live in it. Information obtained from satellites provides input to MHD model to compose a more realistic initial state for the equations and, therefore, more accurate simulations. However, the use of high resolution in time data can produce numerical instabilities that quickly interrupt the simulations. Moreover, satellite time series may have gaps which could be a problem in this context. In order to contribute to the overcoming of such challenges, we propose in this work a methodology based on a variant of the continuous wavelet transform to introduce environmental satellite data on the global resistive MHD model originally developed by Prof. Ogino at the University of Nagoya. Our methodology uses a simplified time-scale version of the original data that preserves the most important spectral features of the phenomena of interest. Then, we can do a long-term integration using this MHD model without any computational instability, while preserving the main time-scale features of the original data set and even overcome possible occurrence of gaps on the satellite data. This methodology also contributes to keeping more realistic physical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.