Abstract
AbstractThis paper considers the problem of an infinite, isotropic elastic plane containing an arbitrary number of non‐overlapping circular holes and isotropic elastic inclusions. The holes and inclusions are of arbitrary size and the elastic properties of all of the inclusions can, if desired, be different. The analysis is based on the two‐dimensional version of Somigliana's formula, which gives the displacements at a point inside a region V in terms of integrals of the tractions and displacements over the boundary S of this region. We take V to be the infinite plane, and S to be an arbitrary number of circular holes within this plane. Any (or all) of the holes can contain an elastic inclusion, and we assume for simplicity that all inclusions are perfectly bonded to the material matrix. The displacements and tractions on each circular boundary are represented as truncated Fourier series, and all of the integrals involved in Somigliana's formula are evaluated analytically. An iterative solution algorithm is used to solve the resulting system of linear algebraic equations. Several examples are given to demonstrate the accuracy and efficiency of the numerical method. Copyright © 2003 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.