Abstract

Hydrological extremes, in particular floods and droughts, impact all regions across planet Earth. They are mainly controlled by the temporal evolution of key hydrological variables like precipitation, evaporation, soil moisture, groundwater storage, surface water storage and discharge. Precise knowledge of the spatial and temporal evolution of these variables at the scale of river basins is essential to better understand and forecast floods and droughts. In this article, we present recent advances on the capability of Earth observation (EO) satellites to provide global monitoring of floods and droughts. The local scale monitoring of these events which is traditionally done using high-resolution optical or SAR (synthetic aperture radar) EO and in situ data will not be addressed. We discuss the applications of moderate- to low-spatial-resolution space-based observations, e.g., satellite gravimetry (GRACE and GRACE-FO), passive microwaves (i.e. SMOS) and satellite altimetry (i.e. the JASON series and the Copernicus Sentinel missions), with supporting examples. We examine the benefits and drawbacks of integrating these EO datasets to better monitor and understand the processes at work and eventually to help in early warning and management of flood and drought events. Their main advantage is their large monitoring scale that provides a “big picture” or synoptic view of the event that cannot be achieved with often sparse in situ measurements. Finally, we present upcoming and future EO missions related to this topic including the SWOT mission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call