Abstract

Abstract. Reference mass spectra are routinely used to facilitate source apportionment of ambient organic aerosol (OA) measured by aerosol mass spectrometers. However, source apportionment of solid-fuel-burning emissions can be complicated by the use of different fuels, stoves, and burning conditions. In this study, the organic aerosol mass spectra produced from burning a range of solid fuels in several heating stoves have been compared using an aerosol chemical speciation monitor (ACSM). The same samples of biomass briquettes and smokeless coal were burnt in a conventional stove and Ecodesign stove (Ecodesign refers to a stove conforming to EU Directive 2009/125/EC), while different batches of wood, peat, and smoky coal were also burnt in the conventional stove, and the OA mass spectra were compared to those previously obtained using a boiler stove. The results show that although certain ions (e.g., m/z 60) remain important markers for solid-fuel burning, the peak intensities obtained at specific m/z values in the normalized mass spectra were not constant with variations ranging from < 5 % to > 100 %. Using the OA mass spectra of peat, wood, and coal as anchoring profiles and the variation of individual m/z values for the upper/lower limits (the limits approach) in the positive matrix factorization (PMF) analysis with the Multilinear Engine algorithm (ME-2), the respective contributions of these fuels to ambient submicron aerosols during a winter period in Dublin, Ireland, were evaluated and compared with the conventional a-value approach. The ME-2 solution was stable for the limits approach with uncertainties in the range of 2 %–7 %, while relatively large uncertainties (8 %–29 %) were found for the a-value approach. Nevertheless, both approaches showed good agreement overall, with the burning of peat (39 % vs. 41 %) and wood (14 % vs. 11 %) accounting for the majority of ambient organic aerosol during polluted evenings, despite their small uses compared to electricity and gas. This study, thus, accounts for the source variability in ME-2 modelling and provides better constraints on the primary factor contributions to the ambient organic aerosol estimations. The finding from this study has significant implications for public health and policymakers considering that it is often the case that different batches of solid fuels are often burnt in different stoves in real-world applications.

Highlights

  • Aerosol particles adversely affect human health and play an important role in the climate system (Fuzzi et al, 2015; Hallquist et al, 2009; Zhang et al, 2015)

  • One scenario is when people might purchase the same type of solid fuel from the same producers but have different stoves for heating their homes

  • We discuss the signatures and differences in the profiles, as well as their implications for organic aerosol (OA) source apportionment

Read more

Summary

Introduction

Aerosol particles adversely affect human health and play an important role in the climate system (Fuzzi et al, 2015; Hallquist et al, 2009; Zhang et al, 2015). Organic aerosol (OA) is a major component of ambient particulate levels in the atmosphere, and the aerosol chemical speciation monitor (ACSM) is regularly used to quantitatively evaluate the contribution of its various primary and secondary sources. This approach to OA source apportionment uses receptor models such as positive matrix factorization (PMF) with the Multilinear Engine algorithm (ME-2) (Canonaco et al, 2013; Canonaco et al, 2015; Paatero, 1997, 1999). Even for local sources, the profiles of the emissions may vary significantly, e.g., for biomass burning due to the use of different fuels, stoves, and burning conditions, causing uncertainty in the ME-2-based source apportionment

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.