Abstract
Detailed targeting of advertisements has long been one of the core offerings of online platforms. Unfortunately, malicious advertisers have frequently abused such targeting features, with results that range from violating civil rights laws to driving division, polarization, and even social unrest. Platforms have often attempted to mitigate this behavior by removing targeting attributes deemed problematic, such as inferred political leaning, religion, or ethnicity. In this work, we examine the effectiveness of these mitigations by collecting data from political ads placed on Facebook in the lead up to the 2022 U.S. midterm elections. We show that major political advertisers circumvented these mitigations by targeting proxy attributes: seemingly innocuous targeting criteria that closely correspond to political and racial divides in American society. We introduce novel methods for directly measuring the skew of various targeting criteria to quantify their effectiveness as proxies, and then examine the scale at which those attributes are used. Our findings have crucial implications for the ongoing discussion on the regulation of political advertising and emphasize the urgency for increased transparency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.