Abstract
Model-based geostatistics and Bayesian approaches are appropriate in the context of Veterinary Epidemiology when point data have been collected by valid study designs. The aim is to predict a continuous infection risk surface. Little work has been done on the use of predictive infection probabilities at farm unit level. In this paper we show how to use predictive infection probability and related uncertainty from a Bayesian kriging model to draw a informative samples from the 8794 geo-referenced sheep farms of the Campania region (southern Italy). Parasitological data come from a first cross-sectional survey carried out to study the spatial distribution of selected helminths in sheep farms. A grid sampling was performed to select the farms for coprological examinations. Faecal samples were collected for 121 sheep farms and the presence of 21 different helminths were investigated using the FLOTAC technique. The 21 responses are very different in terms of geographical distribution and prevalence of infection. The observed prevalence range is from 0.83% to 96.69%. The distributions of the posterior predictive probabilities for all the 21 parasites are very heterogeneous. We show how the results of the Bayesian kriging model can be used to plan a second wave survey. Several alternatives can be chosen depending on the purposes of the second survey: weight by posterior predictive probabilities, their uncertainty or combining both information. The proposed Bayesian kriging model is simple, and the proposed samping strategy represents a useful tool to address targeted infection control treatments and surbveillance campaigns. It is easily extendable to other fields of research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.