Abstract
The localized surface plasmon resonance (LSPR) spectral band of a gold or silver nanoparticle is observed to shift as a result of the near-field plasmonic field of another nanoparticle. The dependence of the observed shift on the interparticle distance is used as a ruler in biological systems and gave rise to a plasmonic ruler equation in which the fractional shift in the dipole resonance is found to decrease near exponentially with the interparticle separation in units of the particle size. The exponential decay length constant was observed to be consistent among a small range of nanoparticle sizes, shapes, and types of metal. The equation was derived from the observed results on disks and spherical nanoparticles and confirmed using results on a DNA conjugated nanosphere system. The aim of the present paper is to use electron beam lithography and DDA calculations to examine the constancy of the exponential decay length value in the plasmonic ruler equation on particle size and shape of a number of particles including nanoparticles of different symmetry and orientations. The results suggest that the exponent is almost independent of the size of the nanoparticle but very sensitive to the shape. A discussion of the nanoparticles most suitable for different applications in biological systems and a comparison of the plasmonic ruler with Forster resonance energy transfer (FRET) is mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.