Abstract

Recently, a number of studies have investigated the use of the 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) for vegetation monitoring and for studying synergisms between the SMMR and the NOAA Advanced Very High Resolution Radiometer (AVHRR). The approaches are promising but raise a number of issues concerning interpretation of the results, specifically on the relative effects of vegetation and other surface and atmospheric characteristics on the observed signal. This article analyzes the 37 GHz Microwave Polarization Difference Temperature (MPDT) in terms of its sensitivity to surface and atmospheric parameters. For this, a radiative transfer model is used which indicates some limitations of the MPDT index and suggests the importance of accounting for atmospheric effects in the data analysis. An alternative approach to the MPDT, including lower SMMR frequencies than 37 GHz, is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.