Abstract

We discuss the application of non-uniform rational B-splines (NURBS) in the scaled boundary finite element method (SBFEM) for the solution of wave propagation problems at rather high frequencies. We focus on the propagation of guided waves along prismatic structures of constant cross-section. Comparisons are made between NURBS-based discretizations and high-order spectral elements in terms of the achievable convergence rates. We find that for the same order of shape functions, NURBS can lead to significantly smaller errors compared with Lagrange polynomials. The difference becomes particularly important at very high frequencies, where spectral elements are prone to instabilities. Furthermore, we analyze the behavior of NURBS for the discretization of curved boundaries, where the benefit of exact geometry representation becomes crucial even in the low-frequency range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.