Abstract
The structural characterization is an essential task in the study of porous materials. To achieve reliable results, it requires to evaluate images with hundreds of pores. Current methods require large time amounts and are subjected to human errors and subjectivity. A completely automatic tool would not only speed up the process but also enhance its reliability and reproducibility. Therefore, the main objective of this article is the study of a deep-learning-based technique for the structural characterization of porous materials, through the use of a convolutional neural network. Several fine-tuned Mask R–CNN models are evaluated using different training configurations in four separate datasets each composed of numerous SEM images of diverse polymeric porous materials: closed-pore extruded polystyrene (XPS), polyurethane (PU), and poly(methyl methacrylate) (PMMA), and open-pore PU. Results prove the tool capable of providing very accurate results, equivalent to those achieved by time-consuming manual methods, in a matter of seconds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.