Abstract

In the present article, a covariant spacetime formalism is used to model the behavior of viscoelastic and hyperelastic solids, within a thermodynamical framework. The latter aims to ensure the validity of thermodynamics second principle and to derive reversible or irreversible models for thermomechanics. The use of the Lie derivative is of particular interest to achieve such goals. Covariance enables to address finite deformation. Coupled to a covariant finite element analysis, it allows numerical simulations that simultaneously ensure the physical balance of energy and momentum for thermomechanical applications. Different mechanical loadings are considered, bending or uniaxial extension ones, with quasi-static or time exponential or time cyclic evolution. We also provide quantification of the different performances of the numerical simulations, and show the advantages and drawbacks of the spacetime approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.