Abstract
In this letter, we propose a physics-based framework to exploit magnets in robotic manipulation. More specifically, we suggest equipping soft and underactuated hands with magnetic elements, which can generate a magnetic actuation able to synergistically interact with tendon-driven and pneumatic actuations, engendering a complementarity that enriches the capabilities of the actuation system. Magnetic elements can act as additional Degrees of Actuation (DoAs), robustifying the motion control of the device and augmenting the hand manipulation capabilities. We investigate the interaction of a soft hand with itself for enriching possible hand shaping, and the interaction of the hand with the environment for enriching possible grasping capabilities. Physics laws and notions reported in the manuscript can be used as a guidance for DoAs augmentation and can provide tools for the design of novel soft hands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.