Abstract
Emotional estimation systems based on electroencephalography (EEG) signals are gaining special attention in recent years due to the possibilities they offer. The field of human-robot interactions (HRI) will benefit from a broadened understanding of brain emotional encoding and thus, improve the capabilities of robots to fully engage with the user’s emotional reactions. In this paper, a methodology for real-time emotion estimation aimed for its use in the field of HRI is proposed. The proposed methodology takes advantage of the lateralization produced in brain oscillations during emotional stimuli and the use of meaningful features related to intrinsic EEG patterns. In the validation procedure, both DEAP and SEED databases have been used. A mean performance of 88.34% was obtained using four categories of the valence-arousal space, and 97.1% using three discrete categories; both of them obtained with a Gaussian-Process classifier. This lightweight method could run on inexpensive, portable devices such as the openBCI system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.