Abstract

AbstractThis work explores the possibility to use the mechanism of hopping conduction – and particularly the transition temperature between band and hopping conduction – on low temperature resistivity measurements, for the control of dopants densities in p‐type compensated silicon. This work first establishes a parametric study of the hopping conductivity: the impact of the majority dopant density and of the compensation ratio is investigated. In the range of majority dopant concentration studied (5×1016 cm–3–5×1017 cm–3), a linear relation seems to appear between the majority dopant concentration and the transition temperature, and this, apparently whatever the compensation impurity type or the crystalline structure. It was then shown that both minority and majority dopant densities can be estimated from a single resistivity versus temperature curve. To our knowledge, this work presents the first experimental study of the feasibility of using such mechanisms to collect relevant information on the compensated Si composition. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.