Abstract

An alternative method has recently been proposed for evaluating global seismic site conditions, or the average shear velocity to 30 m depth ( V S 30), from the Shuttle Radar Topography Mission (SRTM) 30 arcsec digital elevation models (DEMs). The basic premise of the method is that the topographic slope can be used as a reliable proxy for V S 30 in the absence of geologically and geotechnically based site-condition maps through correlations between V S 30 measurements and topographic gradient. Here we evaluate the use of higher-resolution (3 and 9 arcsec) DEMs to examine whether we are able to resolve V S 30 in more detail than can be achieved using the lower-resolution SRTM data. High-quality DEMs at resolutions greater than 30 arcsec are not uniformly available at the global scale. However, in many regions where such data exist, they may be employed to resolve finer-scale variations in topographic gradient, and consequently, V S 30. We use the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center’s National Elevation Dataset (NED) to investigate the use of high-resolution DEMs for estimating V S 30 in several regions across the United States, including the San Francisco Bay area in California, Los Angeles, California, and St. Louis, Missouri. We compare these results with an example from Taipei, Taiwan, that uses 9 arcsec SRTM data, which are globally available. The use of higher-resolution NED data recovers finer-scale variations in topographic gradient, which better correlate to geological and geomorphic features, in particular, at the transition between hills and basins, warranting their use over 30 arcsec SRTM data where available. However, statistical analyses indicate little to no improvement over lower-resolution topography when compared to V S 30 measurements, suggesting that some topographic smoothing may provide more stable V S 30 estimates. Furthermore, we find that elevation variability in canopy-based SRTM measurements at resolutions greater than 30 arcsec are too large to resolve reliable slopes, particularly in low-gradient sedimentary basins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.