Abstract
We describe how a modification of a common technique for developing asymptotic expansions of solutions of linear differential equations can be used to derive Hadamard expansions of solutions of differential equations. Hadamard expansions are convergent series that share some of the features of hyperasymptotic expansions, particularly that of having exponentially small remainders when truncated, and, as a consequence, provide a useful computational tool for evaluating special functions. The methods we discuss can be applied to linear differential equations of hypergeometric type and may have wider applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.