Abstract

The widely used generalized additive models (GAM) method is a flexible and effective technique for conducting nonlinear regression analysis in time-series studies of the health effects of air pollution. When the data to which the GAM are being applied have two characteristics--1) the estimated regression coefficients are small and 2) there exist confounding factors that are modeled using at least two nonparametric smooth functions--the default settings in the gam function of the S-Plus software package (version 3.4) do not assure convergence of its iterative estimation procedure and can provide biased estimates of regression coefficients and standard errors. This phenomenon has occurred in time-series analyses of contemporary data on air pollution and mortality. To evaluate the impact of default implementation of the gam software on published analyses, the authors reanalyzed data from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS) using three different methods: 1) Poisson regression with parametric nonlinear adjustments for confounding factors; 2) GAM with default convergence parameters; and 3) GAM with more stringent convergence parameters than the default settings. The authors found that pooled NMMAPS estimates were very similar under the first and third methods but were biased upward under the second method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.