Abstract

Frequency-swept (FS) pulses, such as wideband uniform-rate smooth-truncation (WURST) pulses, have found much success for the acquisition of ultra-wideline (UW) solid-state NMR spectra. In this preliminary study, new pulses and pulse sequences are explored in simulation and experimentally for several nuclei exhibiting UWNMR powder patterns under static conditions, including 119Sn (I = 1/2), 195Pt (I = 1/2), 2H (I = 1), and 71Ga (I = 3/2). First, hyperbolic secant (HS) and tanh/tan (THT) pulses are tested and implemented as excitation and refocusing pulses in spin-echo and Carr-Purcell/Meiboom Gill (CPMG)-type sequences, and shown to have comparable performances to analogous WURST pulses. Second, optimal control theory (OCT) is utilized for the design of new Optimal Control Theory Optimized Broadband Excitation and Refocusing (OCTOBER) pulses, using carefully parameterized WURST, THT, and HS pulses as starting points. Some of the new OCTOBER pulses used in spin-echo sequences are capable of efficient broadband excitation and refocusing, in some cases resulting in spectra with increased signal enhancements over those obtained in experiments using conventional FS pulses. Finally, careful consideration of the spin dynamics of several systems, by monitoring of the time evolution of the density matrix via the Liouville-von Neumann equation and analysis of the time-resolved Fourier transforms of the pulses, lends insight into the underlying mechanisms of the FS and OCTOBER pulses. This is crucial for understanding their performance in terms of generating uniformly excited patterns of high signal intensity, and for identifying trends that may offer pathways to generalized parameterization and/or new pulse shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call