Abstract
We are interested in a communication system that operates in the presence of an intelligent jammer, under stringent power constraints, but with flexible bandwidth constraints.We optimize some of the key elements in the transceiver design for low power consumption, and thus high complexity components of the system, such as matched filters (MF), forward error correction (FEC) that employs iterative decoders, coherent demodulators, and bandwidth-efficient modulation formats, are not feasible for this research. Rather, our system is designed using <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</i> -ary frequency shift keying (MFSK) with non-coherent detection and fast frequency hopping (FFH), optimized two-pole bandpass filters (BPF), and Reed-Solomon (RS) codes with hard-decision decoding. Among other things, we show that by properly optimizing the key parameters of the BPFs and RS codes, we can design the system to be significantly less complex than the MF system with a performance loss of less than 1.4 dB for most scenarios that we considered. Further, the 2-pole BPF system can actually outperform the corresponding MF system by up to 2.4 dB in the presence of multi-tone jamming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.