Abstract

For quantitative structure-activity relationship (QSAR) modeling in ligand-based drug discovery programs, pseudo-molecular field (PMF) descriptors using intrinsic atomic properties, namely, electronegativity and electron affinity are studied. In combination with partial least squares analysis and Procrustes transformation, these PMF descriptors were employed successfully to develop correlations that predict the activities of target protein inhibitors involved in various diseases (cancer, neurodegenerative disorders, HIV, and malaria). The results show that the present QSAR approach is competitive to existing QSAR models. In order to demonstrate the use of this algorithm, we present results of screening naturally occurring molecules with unknown bioactivities. The pIC50 predictions can screen molecules that have desirable activity before assessment by docking studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.