Abstract

Here we present the synthesis and evaluation of antibody-drug conjugates (ADCs), for which antibody and drug are non-covalently connected using complementary DNA linkers. These ADCs are composed of trastuzumab, an antibody targeting HER2 receptors overexpressed on breast cancer cells, and monomethyl auristatin E (MMAE) as a drug payload. In this new ADC format, trastuzumab conjugated to a 37-mer oligonucleotide (ON) was prepared and hybridized with its complementary ON modified at 5-end with MMAE (cON-MMAE) in order to obtain trastuzumab-DNA-MMAE. As an advantage, the cON-MMAE was completely soluble in water, which decreases overall hydrophobicity of toxic payload, an important characteristic of ADCs. The stability in the human plasma of these non-engineered ON-based linkers was investigated and showed a satisfactory half-life of 5.8 days for the trastuzumab-DNA format. Finally, we investigated the in vitro cytotoxicity profile of both the DNA-linked ADC and the ON-drug conjugates and compared them with classical covalently linked ADC. Interestingly, we found increased cytotoxicity for MMAE compared to cON-MMAE and an EC50 in the nanomolar range for trastuzumab-DNA-MMAE on HER2-positive cells. Although this proved to be less potent than classically linked ADC with picomolar range EC50, the difference in cytotoxicity between naked payload and conjugated payload was significant when an ON linker was used. We also observed an interesting increase in cytotoxicity of trastuzumab-DNA-MMAE on HER2-negative cells. This was attributed to enhanced non-specific interaction triggered by the DNA strand as it could be confirmed using ligand tracer assay.

Highlights

  • We present the synthesis and evaluation of antibody-drug conjugates (ADCs), for which antibody and drug are non-covalently connected using complementary DNA linkers

  • Conjugation of highly potent cytotoxic drugs with antibodies recognizing the antigens overexpressed on cancer cells affords ADCs, which enable the delivery of the cytotoxic payload into the tumor cells in a controlled and selective manner

  • We have recently reviewed antibody-oligonucleotide conjugates (AOCs) for applications as therapeutic and detection agents

Read more

Summary

Introduction

We present the synthesis and evaluation of antibody-drug conjugates (ADCs), for which antibody and drug are non-covalently connected using complementary DNA linkers These ADCs are composed of trastuzumab, an antibody targeting HER2 receptors overexpressed on breast cancer cells, and monomethyl auristatin E (MMAE) as a drug payload. The Gothelf group has shown that a homogeneous anti-EGFR-dsDNA conjugate loaded with doxorubicin (~ 8 drugs per 21 bp DNA) had enhanced cytotoxicity to EGFR+ cells while being more tolerant to EFGR- cells than free doxorubicin[12] This opens a new avenue for development of targeted drug delivery systems based on AOCs, which had mainly been used as therapeutic agents in the context of small interfering RNA (siRNA) delivery[13]. This format can be combined with intercalating drugs, allowing the preparation of dual-drug ADCs

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.