Abstract

The tuning of Fuzzy Rule-Based Systems is often applied to improve their performance as a post-processing stage once an appropriate set of fuzzy rules has been extracted. This optimization problem can become a hard one when the size of the considered system in terms of the number of variables, rules and, particularly, data samples is big. Distributed Genetic Algorithms are excellent optimization algorithms which exploit the nowadays available parallel hardware (multicore microprocessors and clusters) and could help to alleviate this growth in complexity.In this work, we present a study on the use of the Distributed Genetic Algorithms for the tuning of Fuzzy Rule-Based Systems. To this end, we analyze the application of a specific Gradual Distributed Real-Coded Genetic Algorithm which employs eight subpopulations in a hypercube topology.The empirical performance in solution quality and computing time is assessed by comparing its results with those from a highly effective sequential tuning algorithm. We applied both, the highly effective sequential algorithm and the distributed method, for the modeling of four well-known regression problems. The results show that the distributed approach achieves better results in terms of quality and execution time as the complexity of the problem grows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.