Abstract

Goal oriented dual weight error estimation has been used in context of computational fluid dynamics for several years. The adaptation of this method to geophysical models is the subject of this paper. A differentiation-enabled prototype of the NAG Fortran compiler is used to generate a discrete adjoint version of such a geophysical model and allows to compute the required goal sensitivities. Numerical results are presented for a shallow water configuration of the Icosahedral Non-hydrostatic General Circulation Model (ICON). A special treatment of the underlying linear solver is discussed yielding improved scalability of this approach and a significant reduction in memory consumption and runtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.