Abstract

Abstract. Biomass burning has long been recognised as an important source of trace gases and aerosols in the atmosphere. The burning of vegetation has a repeating seasonal pattern, but the intensity of burning and the exact localisation of fires vary considerably from year to year. Recent studies have demonstrated the high interannual variability of the emissions that are associated with biomass burning. In this paper I present a methodology using active fire counts from the Along-Track Scanning Radiometer (ATSR) sensor on board the ERS-2 satellite to estimate the seasonal and interannual variability of global biomass burning emissions in the time period 1996--2000. From the ATSR data, I compute relative scaling factors of burning intensity for each month, which are then applied to a standard inventory for carbon monoxide emissions from biomass burning. The new, time-resolved inventory is evaluated using the few existing multi-year burned area observations on continental scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.