Abstract

AbstractIn this paper, we discuss time-optimal control problems for dynamic systems. Such problems usually arise in robotics when a manipulation should be carried out in minimal operation time. In particular, for time-optimal control problems with a high number of control parameters, the adjoint method is probably the most efficient way to calculate the gradients of an optimization problem concerning computational efficiency. In this paper, we present an adjoint gradient approach for solving time-optimal control problems with a special focus on a discrete control parameterization. On the one hand, we provide an efficient approach for computing the direction of the steepest descent of a cost functional in which the costs and the error in the final constraints reduce within one combined iteration. On the other hand, we investigate this approach to provide an exact gradient for other optimization strategies and to evaluate necessary optimality conditions regarding the Hamiltonian function. Two examples of the time-optimal trajectory planning of a robot demonstrate an easy access to the adjoint gradients and their interpretation in the context of the optimality conditions of optimal control solutions, e.g., as computed by a direct optimization method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.