Abstract

The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call