Abstract

Abstract The increased availability of modern embedded many-core architectures supporting floating- point operations in hardware makes them interesting targets in traditional high performance computing areas as well. In this paper, the Lattice Boltzmann Method (LBM) from the domain of Computational Fluid Dynamics (CFD) is evaluated on Adapteva's Epiphany many-core architecture. Although the LBM implementation shows very good scalability and high floating-point efficiency in the lattice computations, current Epiphany hardware does not provide adequate amounts of either local memory or external memory bandwidth to provide a good foundation for simulation of the large problems commonly encountered in real CFD applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.