Abstract
Aqueous environments contaminated with diesel components pose a threat to the native biota due to the intrinsically toxic nature of the many hydrocarbon compounds present. In the event of diesel being released into an aqueous environment it is imperative that the contaminant is recovered in a rapid manner to ensure the safety of aquatic organisms as well as to maintain desired water quality. The research presented in this study investigates the potential of polymeric sorbents to recover diesel from a contaminated aqueous source. Thermoplastic materials, such as styrene butadiene derived polymers, were shown to substantially reduce diesel levels in excess of 98% with 90% of this recoverable fraction being removed in less than 30 min. Recyclable materials, such as used automobile tires, were shown to obtain similar results with added potential benefit including lower cost and reuse of a waste material. The polymeric sorbents were also biologically regenerated and this was accomplished in a solid-liquid two-phase partitioning bioreactor, in which 65% of the initial diesel contamination was degraded within a 9 day period. The result of this work was the demonstration of a low cost, reusable remediation technology for the recovery, and destruction of diesel from aqueous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.