Abstract

In this paper, tetrahedral background cells are used in nodal integration of radial point interpolation method (RPIM). The nodal integration is based on Taylor series terms and it is originally applied for the solutions of 2D problems in literature. Therefore, in this study, it is attempted that the tetrahedral integration cells are used in the solution of 3D elasto-static problems. The accuracy is seriously affected by order of Taylor series terms and it is investigated up to fifth order. A methodology is developed for prevention of negative volumes and calculation problems in subdivision of integration cells for each node. Three different case studies are solved with different support domain sizes and shape parameters. The best accuracy is achieved with fourth-order Taylor terms in nodal integration radial point interpolation method (NI-RPIM). [Formula: see text]-value of 3.00 and [Formula: see text] value of 1.03 in radial basis functions give good results in all cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call