Abstract

Determining the geographical area that needs to be excluded due to incumbent activity is critical to realize high spectral utilization in spectrum sharing networks. This can be achieved by estimating the incumbent location and transmit power. However, keeping the hardware complexity of sensing nodes to a minimum and scalability are critical for spectrum sharing applications with commercial intent. We present a discrete-space $\ell_{1}$ - norm minimization solution based on geolocation-aware energy detection measurements. In practice, the accuracy of geolocation tagging is limited. We capture the impact as a basis mismatch and derive the necessary condition that needs to be satisfied for successful detection of multiple incumbents' location and transmit power. We find the upper bound for the probability of eliminating the impact of limited geolocation tagging accuracy in a lognormal shadow fading environment, which is applicable to all generic $\ell_{1}$ - norm minimization techniques. We propose an algorithm based on orthogonal matching pursuit that decreases the residual in each iteration by allowing a selected set of basis vectors to rotate in a controlled manner. Numerical evaluation of the proposed algorithm in a Licensed Shared Access (LSA) network shows a significant improvement in the probability of missed detection and false alarm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.