Abstract

This work focuses on the usability of event zero time determination using xenon isotopic activity ratios. Two data sets from Nevada underground nuclear test and Fukushima accident debris were used to calculate the age of radioxenon release by considering three kinds of radioactivity release radionuclide sources: nuclear explosion scenarios, nuclear power reactor release and medical isotopes production facilities release. Typical nuclear power reactor releases were characterized and reference values are proposed for six isotopic activity ratios, which data can be considered as reference point of nuclear reactor effluents at the time of their release obtained from real observations. The same reference values of isotopic activity ratio are given for medical isotopes production facilities releases. The purpose of this study is to evaluate the use of zero-time calculation for source characterization under the assumption that a hypothesis about the event time is made. The event time information may come from a seismo-acoustic event of interest or an inverse atmospheric transport simulation or other context information. For both data sets used in this study, the age precisions are calculated and the time precision difference is evaluated and used as a parameter for the characterization of each radionuclide event. Almost all radioxenon isotopic activity ratios are found to correctly identifying the source type of the radionuclide events studied in this work. The results from this radionuclide events characterization study may be helpful for event screening activities of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.