Abstract
A cell-free massive multiple-input multiple-output system is considered using a max-min approach to maximize the minimum user rate with per-user power constraints. First, an approximated uplink user rate is derived based on channel statistics. Then, the original max-min signal-to-interference-plus-noise ratio problem is formulated for the optimization of receiver filter coefficients at a central processing unit and user power allocation. To solve this max-min non-convex problem, we decouple the original problem into two sub-problems, namely, receiver filter coefficient design and power allocation. The receiver filter coefficient design is formulated as a generalized Eigenvalue problem, whereas the geometric programming (GP) is used to solve the user power allocation problem. Based on these two sub-problems, an iterative algorithm is proposed, in which both problems are alternately solved while one of the design variables is fixed. This iterative algorithm obtains a globally optimum solution, whose optimality is proved through establishing an uplink-downlink duality. Moreover, we present a novel sub-optimal scheme which provides a GP formulation to efficiently and globally maximize the minimum uplink user rate. The numerical results demonstrate that the proposed scheme substantially outperforms the existing schemes in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.