Abstract

To explore a possible mechanism of deep earthquakes, this paper analyzes the unstable propagation of a stress-induced phase transition which is initiated in a homogeneous stress field. This Stephen problem is formulated as an initial-value problem for the phase boundary, and the driving force of the boundary is computed by using the solution of the boundary-value problem for a partially transformed material. The propagation of the phase transition under uniform pressure is numerically simulated. It is shown that (1) under lower pressure, the transition is terminated at a certain size, but it can propagate unstably when an initially transformed region is sufficiently large; and (2) when the pressure attains a critical value, the propagation becomes unstable, and goes in a particular direction depending on the initial shape. These results confirm the possibility of the unstable propagation of phase transition, and provide a theoretical basis for the hypothesis that the phase transition of a mantle material can trigger a deep earthquake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.