Abstract

We compute the 't Hooft coupling correction to the infinite coupling expression for the second order transport coefficient $\lambda_2$ in ${\cal N}=4$ $SU(N_c)$ supersymmetric Yang-Mills theory at finite temperature in the limit of infinite $N_c$, which originates from the $R^4$ terms in the low energy effective action of the dual type IIB string theory. Using this result, we show that the identity involving the three second order transport coefficients, $2 \eta \tau_\Pi - 4 \lambda_1 - \lambda_2 =0$, previously shown by Haack and Yarom to hold universally in relativistic conformal field theories with string dual descriptions to leading order in supergravity approximation, holds also at next to leading order in this theory. We also compute corrections to transport coefficients in a (hypothetical) strongly interacting conformal fluid arising from the generic curvature squared terms in the corresponding dual gravity action (in particular, Gauss-Bonnet action), and show that the identity holds to linear order in the higher-derivative couplings. We discuss potential implications of these results for the near-equilibrium entropy production rate at strong coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.