Abstract
In this paper we use some recent developments in Nonabelian Hodge theory to study the existence of holomorphic functions on the universal coverings of algebraic surfaces. In particular we prove that if the fundamental group of an algebraic surface is reductive then its universal covering is holomorphically convex. This is a partial verification of the Shafarevich conjecture claiming that the universal covering of a smooth projective variety is holomorphically convex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales scientifiques de l'Ecole normale superieure
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.