Abstract

L.S. Shapley [1953] showed that there is a unique value defined on the classD of all superadditive cooperative games in characteristic function form (over a finite player setN) which satisfies certain intuitively plausible axioms. Moreover, he raised the question whether an axiomatic foundation could be obtained for a value (not necessarily theShapley value) in the context of the subclassC (respectivelyC′, C″) of simple (respectively simple monotonic, simple superadditive) gamesalone. This paper shows that it is possible to do this. Theorem I gives a new simple proof ofShapley's theorem for the classG ofall games (not necessarily superadditive) overN. The proof contains a procedure for showing that the axioms also uniquely specify theShapley value when they are restricted to certain subclasses ofG, e.g.,C. In addition it provides insight intoShapley's theorem forD itself. Restricted toC′ orC″, Shapley's axioms donot specify a unique value. However it is shown in theorem II that, with a reasonable variant of one of his axioms, a unique value is obtained and, fortunately, it is just theShapley value again.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.