Abstract
We study the class of pseudo-norms on the space of smooth functions on a closed symplectic manifold, which are invariant under the action of the group of Hamiltonian diffeomorphisms. Our main result shows that any such pseudo-norm that is continuous with respect to the C ∞-topology, is dominated from above by the L ∞-norm. As a corollary, we obtain that any bi-invariant Finsler pseudo-metric on the group of Hamiltonian diffeomorphisms that is generated by an invariant pseudonorm that satisfies the aforementioned continuity assumption, is either identically zero or equivalent to Hofer’s metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.