Abstract

Distance covariance and distance correlation are non-negative real numbers that characterize the independence of random vectors in arbitrary dimensions. In this work we prove that distance covariance is unique, starting from a definition of a covariance as a weighted L2 norm that measures the distance between the joint characteristic function of two random vectors and the product of their marginal characteristic functions. Rigid motion invariance and scale equivariance of these weighted L2 norms imply that the weight function of distance covariance is unique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.