Abstract
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe2 monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe2 B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the exciton-trion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.